Dualities for Algebras of Fitting's Many-Valued Modal Logics

نویسنده

  • Yoshihiro Maruyama
چکیده

Stone-type duality connects logic, algebra, and topology in both conceptual and technical senses. This paper is intended to be a demonstration of this slogan. In this paper we focus on some versions of Fitting’s L-valued logic and L-valued modal logic for a finite distributive lattice L. Using the theory of natural dualities, we first obtain a duality for algebras of L-valued logic. Based on this duality, we develop a Jónsson-Tarski-style duality for algebras of L-valued modal logic, which encompasses Jónsson-Tarski duality for modal algebras as the case L = 2. We also discuss how the dualities change when the algebras are enriched by truth constants. Topological perspectives following from the dualities provide compactness theorems for the logics and the effective classification of categories of algebras involved, which tells us that Stone-type duality makes it possible to use topology for logic and algebra in significant ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Fuzzy Topology and Łukasiewicz Logics from the

This paper explores relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. We first show a fuzzy topological duality for the algebras of Lukasiewicz n-valued logic with truth constants, which generalizes Stone duality for Boolean algebras to the n-valued case via fuzzy topology. Then, based on this duality, we show a fuzzy topological duality for the al...

متن کامل

Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...

متن کامل

A New Representation Theorem for Many-valued Modal Logics

We propose a new definition of the representation theorem for many-valued logics, with modal operators as well, and define the stronger relationship between algebraic models of a given logic and relational structures used to define the Kripke possible-world semantics for it. Such a new framework offers a new semantics for many-valued logics based on the truth-invariance entailment. Consequently...

متن کامل

New Representation Theorem for Many-valued Modal Logics

We propose a new definition of Representation theorem for many-valued modal logics, based on a complete latice of algebraic truth values, and define the stronger relationship between algebraic models of a given logic L and relational structures used to define the Kripke possible-world semantics for L. Such a new framework offers clear semantics for the satisfaction algebraic relation, based on ...

متن کامل

Autoreferential semantics for many-valued modal logics

In this paper we consider the class of truth-functional modal many-valued logics with the complete lattice of truth-values. The conjunction and disjunction logic operators correspond to the meet and join operators of the lattices, while the negation is independently introduced as a hierarchy of antitonic operators which invert bottom and top elements. The non-constructive logic implication will...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 106  شماره 

صفحات  -

تاریخ انتشار 2011